
 
 
 
 
 
 
 
 
 
 
 
 

HTML-AWARE TECHNIQUE FOR DATA CLEANING 
 
 

Mirel Cosulschi 
 
 

University of Craiova 
13 A. I. Cuza Street 

20585 Craiova, Romania 
E-mail: mirelc@central.ucv.ro 

 
 
 
 

Abstract: Web pages created by human authors or dynamically generated using different 
scripts and data stored in a back-end database frequently contain many common 
mistakes. In order to obtain an acceptable result, web rendering engine component of a 
browser and automatic tools for extracting information from HTML pages need a 
preprocessing step to clean those web pages. We devised a simple algorithm whose main 
task is to properly close the tags and transform a page from HTML format into a 
XHTML format. 
 
 
Keywords: bad data identification, data processing, transformations, html data, cleaning 
algorithm. 

 
 
 

 
1. INTRODUCTION 

 
The problem of data cleaning has been explored by 
many researchers as a problem that presents 
interesting challenges such as: dealing with missing 
data, handling erroneous data, and so on. Domain-
independent techniques consist one direction of 
exploration.  
 
The vast amount of information on World Wide Web 
cannot be fully exploited due to its main 
characteristics: web pages are designed with respect 
to the human readers, who interact with the systems 
by browsing HTML pages, rather than to be used by 
a computer program. The semantic content structure 
of web pages is the principal element exploited by 
many web applications: one of the latest directions is 
the construction of wrappers in order to structure web 
data using regular languages and database techniques 
(Laender et all, 2002), (Chang, 2001). A subsequent 
problem arisen here is the necessity to fix up a wide 
range of problems from  poor generated web pages. 
 
A HTML page may contain many types of 
information presented in different forms, such as text, 

image or applets (programs written in Java and 
executed, better said interpreted, inside a virtual 
machine - Java Virtual Machine, browser integrated). 
Hyper Text Markup Language (HTML 4.01) is a 
language designed for data presentation, and was not 
intended as a mean of structuring information and 
easing the process of structured data extraction. 
Another problem of HTML pages is related to their 
bad construction, language standards frequently 
being broken (i.e. improper closed tags, wrong nested 
tags, bad parameters and incorrect parameter value). 
 
Web pages from commercial web sites are usually 
generated dynamically using different scripts and 
data stored in a back-end DBMS. The visitor can 
easily notice the usage of a few templates in the same 
site, with slight differences between them. If such a 
script has a small bug, then the problem will spread 
among all generated web pages. 
 
 

2. HTML-XHTML TRANSFORMATION 
 
World Wide Web consortium has warmly 
recommended usage of stricter standard Markup 



Languages, such as XHTML and XML, in order to 
reduce errors resulted in the process of parsing 
various web pages created by disobeying the basic 
rules. Despite this recommendation, there still 
remains a huge quantity of web pages that do not 
respect the new standards, and with whom, the parser 
of search engine must cope. 
 
We transform each HTML page into a well-formed 
XHTML page. Of the applications that can be 
involved in this process, we enumerate three of them: 

• JTidy, a Java tool based on HTML Tidy 
(Tidy 2001) that is a W3C open source 
software 

• CyberNeko HTML Parser (Neko HTML 
Parser) 

• javax.swing.text.html.parser.Parser (comes 
embedded with the JDK) 

 
These are complex programs, with a great degree of 
generality, trying to satisfy overall demands. During 
their usage we encounter situations when the result 
was not totally satisfactory. 
 
We devised a simpler algorithm called CleanDom 
which performed well with respect to our necessities. 
We implemented it in Java as part of a whole system 
developed. 
 
From a constructed XHTML file, the DOM tree 
representation used in the next step of our process, 
can be created with no effort. 
 
2.1 XHTML 
 
XHTML (Extensible HyperText Markup Language) 
(XHML 1.0) represents a family of document types 
which extends HTML4 language. In other words, 
XHTML is a redefinition of HTML 4.01 standards 
with the help of XML. Its goal is to replace the 
HTML language in the future and obtain cleaner 
documents. 
 

• documents must be well-formed: all 
elements must be ested inside on unique 
root element <html>, any eement can have 
children elements; children elements must e 
correctly closed and properly nested: 
 
<html> 
  <head>...</head> 
  <body>...</body> 
</html> 

• tag names must be in lowercase: 
 
<body> 
  <p> Sample </p> 
</body> 

• empty elements must be closed: 
 
The text will be divided by a 
horizontal line. <hr /> 
The image must be closed <img 
src="poza.gif" /> 

• all XHTML elements must be closed: 
 
Wrong: <p> Un text 
Correct: <p> Un text </p> 

• XHTML elements must be  properly nested: 
 
Wrong: <b><i> Bold, italic followed 
by bold, italic</b></i> 
Correct:<b><i> Bold, italic followed 
by italic, bold</i></b> 

• attribute names must be in lower case: 
 

Wrong: <table WIDTH="100%"> 
Correct: <table width="100%"> 

• attribute values must be quoted: 
 
Wrong: <table width=100%> 
Correct: <table width="100%"> 
Wrong: <table width=100%> 
Correct: <table width="100%"> 

 
• attribute minimization is  forbidden: 

 
Wrong: <frame noresize> 
Correct: <frame noresize="noresize" 
/> 

• the id attribute replaces the name attribute 
• the lang attribute applies to almost every 

XHTML element. It specifies the language 
of the content within an element 

• the XHTML DTD defines mandatory 
elements: the 'html', 'head' and 'body' 
elements must be present, and the 'title' must 
be present inside the head element; all 
XHTML documents must have a 
DOCTYPE declaration 

 
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 
1.0 Strict//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd"> 
<html 
xmlns="http://www.w3.org/1999/xhtml"> 
 <head> 
  <title>Titlu </title> 
 </head> 
 <body> Continut </body> 
</html> 

 
 

3.  CleanDOM ALGORITHM DESCRIPTION 
 
CleanDOM algorithm consists of the following main 
steps (see Algorithm 1): 

• parse HTML page obtaining base tokens 
• call Forward-Pass algorithm 
• call Backward-Pass algorithm 

The description of Forward-Pass step can be found 
in Algorithm 2. 
 
After the input page was parsed and decomposed in 
atomic units, called tokens, the algorithm starts 
processing those elements using a stack for help. The 
stack will keep all open tags, tags for which their 
closing pair was not encountered yet. According to 
the rules of XHTML, a close tag must correspond to 



each element. If such a tag cannot be found on input, 
then it will be created (line 14). 
 
In lines 2-3, elements which cannot have a closing 
tag (e.g. <style>, <script>) or can be empty (e.g. 
<hr>, <br>, <img>) are directly added to vector B. 
In line 6 the special cases are treated first: we are 
talking about particular chaining of tags which will 
be handled differently for each situation. Due to the 
HTML loose syntax, there is a very high number of 
improper tag combinations, an exhaustively handling 
of all these possibilities being difficult either to 
foresee or to implement. In our implementation we 
handled the majority of situations that can be 
encountered in common applications with a high 
probability and which proved to be adequate for our 
proposed goal. 
 
If the element is an open tag then it will be pushed 
onto the stack (line 7) and added to the output vector 
B (line 20). If the current element is a close tag, and 
if his related item (open tag) is presented into the 
stack, then all elements between this item and the 
stack's top will be extracted (line 12). For each 
element extracted from the stack, it will be created a 
corresponding  close tag subsequently added to the 
vector B (line 14). 
 
The Backward-Pass step is described in Algorithm 3. 
 
Looking at the subroutine 3, it can easily be seen that 
Backward-Pass is very similar to Forward-Pass: in 
this situation the stack will be used to keep track of 
close tags. The element list will be run through 
backwards, from the last element to the first element; 
to keep things in an unitary way the first operation is 
to reverse the input vector (line 1). 
 
The vector A is traversed element by element. Each 
element of vector A which does not have a closing 
tag or can be empty is added to the result vector B 
(line 3-4). If item is a close tag then it will be pushed 
onto the stack (line 8) and added to vector B. Lines 
10-19 handle the case when an open-tag is 
encountered to whom must be associated a close tag. 
If there are other elements between stack's top and 
the position of close tag, then for each such element a 
correspondent open tag is created (line 14). 
 
Example. Let us consider the following page: 
 

<head> 

 <title> First Test Page </title> 

</head> 

<body> 

  <tag1> 

    <tag2> 

      <tag3> 

       Inside Tag3 

      </tag3> 

      Outside Tag3, inside Tag2 

      <tag2> 

        Open second Tag2, Close Tag1 

      </tag1> 

      Close second Tag2 

    </tag2> 

    Close first Tag1 

  </tag1> 

</body> 

</html> 
 

The page tokenisation result is: <head>, <title>, 'First 
Test Page', </title>, </head>, <body>, <tag1>, 
<tag2>, <tag3>, 'Inside Tag3', </tag3>, 'Outside 
Tag3, inside Tag2', <tag2>, 'Open second Tag2, 
Close Tag1', </tag1>, 'Close second Tag2', </tag2>, 
'Close first Tag1', </tag1>, </body>, </html>. 
 
After the call of Forward-Pass, the output vector will 
contain the following elements: <html>, <head>, 
<title>, 'First Test Page', </title>, </head>, <body>, 
<tag1>, <tag2>, <tag3>, 'Inside Tag3', </tag3>, 
'Outside Tag3, inside Tag2', <tag2>, 'Open second 
Tag2, Close Tag1', </tag2>}, </tag2>, </tag1>, 
'Close second Tag2', </tag2>, 'Close first Tag1', 
</tag1>, </body>, </html> (new tags are marked 
with bold). 
 
After the call of the last processing step, Backward-
Pass, the page will look like: 
 

<html> 

 <head> 

  <title> 

   First Test Page 

  </title> 

 </head> 

 <body> 

  <tag1> - new 

   <tag2> - new 

    <tag1> 

     <tag2> 

      <tag3> 

       Inside Tag3 

      </tag3> 

      Outside Tag3, inside Tag2 

      <tag2> 

       Open second Tag2, Close Tag1 

      </tag2> - new 

     </tag2> - new 

    </tag1> 

    Close second Tag2 

   </tag2> 

   Close first Tag1 

  </tag1> 

 </body> 

</html> 
 

4. CONCLUSIONS 
 
The number of situations when we encounter wrong 
defined HTML pages is very large, and we didn’t 



proposed to treat all such cases. The aim of the 
algorithm is to treat the most common mistakes, to 
obtain fast and accurate results. The complexity of 
the algorithm is linearly depending of the number of 
tags from the parsed web page. 
 
The algorithm was implemented in Java and the tests 
we have made helped us to handle many exceptional 
situations. We are currently using this in our other 
web related projects. 

 
 

REFERENCES 
 
Document Object Model (DOM) Level 3 Core 

specification (2004). W3C Recommendation.  
 http://www.w3.org/TR/DOM-Level-3-Core/ 
HTML 4.01 Specification (1998), 
 http://www.w3.org/TR/1999/REC-html401-

19991224. 
Neko HTML Parser, 
 http://www.apache.org/~andyc/neko/doc/html/in

dex.html. 
W3C, HTML Tidy, 
 http://www.w3.org/People/Raggett/tidy 
XHTML 1.0 The Extensible HyperText Markup 

Language (Second Edition)}, A reformulation of 
HTML 4 in XML 1.0. 

 http://www.w3.org/TR/2002/REC-xhtml1-
20020801/ 

Chang, Chia-Hui (2001), IEPAD: Information 
extraction based on pattern discovery, in 
Proceedings of the tenth international 
conference on World Wide Web. 

Laender, A.,  Ribeiro-Neto, B. , Da Silva, A., and 
Texeira , J(2002). A Brief Survey of Web Data 
Extraction Tools, ACM SIGMOD Record, 31(2). 

 



 
Algorithm 1: Algorithm CleanDOM 
1: Parse HTML page obtaining base elements (tags and text strings) 
2: Call Forward-Pass 
3: Call Backward-Pass 
 

 
Algorithm 2: Algorithm Forward-Pass 
Input: A – the vector contains token list from original HTML page 
Output: B – the vector contains the modified token list 
1: for each item from A do 
2:  if  (item doesn't have a closing tag OR can be empty) then 
3:   add item to B 
4:  else 
5:   if (item is a tag) then 
6:    first test some special cases 
7:    if (item is open-tag) then 
8:     push item on Stack 
9:    else 
10:     if (exists on the stack the pair of item element) then 
11:      while (Stack is not empty) do 
12:       pop from the Stack and save into tmpTab 
13:       if (tmpTag ≠ tag) then 
14:        add to B a closed-tag in 
correspondence to tmpTag 
15:       else 
16:        break 
17:       endif 
18:      endwhile 
19:     endif 
20:     add item to B 
21:    endif 
22:   endif 
23:  endif 
24: endfor 
 
 
Algorithm 3: Algorithm Backward-Pass 
Input: A - the vector contains token list resulted from Forward-Pass call 
Output: B – the vector contains the modified token list 
1:  State the order of elements from the vector A is reversed 
2:  for each item from A do 
3:  if (item doesn’t have a closing tag ∨  can be empty) then 
4:   add item to B 
5:  else 
6:   if (item is a tag) then 
7:    if (item is close-tag) then 
8:     push item on Stack 
9:    else 
10:     if (exists on the stack the pair of item element) then 
11:      while (Stack is not empty) do 
12:       pop from the Stack and save into tmpTab 
13:       if (tmpTag ≠ tag) then 
14:        add to B a open-tag in 
correspondence to tmpTag 
15:       else 
16:        break 
17:       endif 
18:      endwhile 
19:     endif 
20:     add item to B 
21:    endif 
22:   endif 
23:  endif 
24: endfor 
25: the order of elements from vector B is reversed 
 

 


